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ABSTRACT 

Varia t iona l  p r inc ip l e s  for upper and lower bounds t o  a l l  even 

order  Rayleigh-Schr'hinger per turbat ion energies  a r e  given. The 

upper bound f o r  t h e  second order  energy is  j u s t  t h e  Hylleraas ' 

p r i n c i p l e  and t h e  upper bounds for  energies  through 12th order  are 

t h e  same as those used by Knight and Scherr.  The general  upper 

bound p r inc ip l e  f o r  t he  (2n)th order energy i s  equivalent  t o  t h e  

v a r i a t i o n a l  p r i n c i p l e  obtained by Sinanoglu for t h e  n- th  order  wave 

function, but our p r inc ip l e  gives t h e  %act (2n)th order  energy 

when t h e  t r i a l  wave funct ion is  exact. The lower bounds f o r  t h e  

even order  energies  are general izat ions of t he  lower bound obtained 

by Prager and Hirschfelder  f o r  the second order.  
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UPPER AND LOWER BOUNDS FOR RAYLEIGH-SCHR~INGER 

PJ3RTURBATION ENERGES 

Introduction 

There is increasing interest in the application of perturbation 

methods to the solution of quantum mechanical problems. In most 

cases of practical interest, the perturbation equations cannot be 

solved explicitly so that variational principles are useful for 

obtaining both the energies and the wave functions in the various 

orders of perturbation. 

In the present paper, variational principles are given for both 

the upper and lower bounds of the even order energies. 

upper bound principles, our contributions are afinor. The principle 

For the 

for the 
6 Scherr 

through 

second order energy is ~ell-knovn~~*’~, and Knight and 

derived similar principles for the even order energies 

the twelfth order. Sinanoglu7 obtained variational 

principles for the general (2n)th order energies, which are useful 

for determining the wave functions, but do not reduce to the exact 

energy when the wave function is exact. The lower bound principle 

given here is a generalization of the principle for the second 

order energy given by Prager and Hirschfelder . 4‘ The application 

of this principle to problems of practical interest is doubtful 

due to the difficulty in solving the equation of constraint for 
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any potentials involving the interelectronic distance. 

In the work that follows non-degenerate unperturbed states 

and real wave functions are assumed throughout. Also, the 

subscripts indicating the state under consideration are omitted 

to make the notation less cluttered. The zeroth order wave 

function is normalized to unity, ( y ' o ) ,  y'") = I . 
vn) The normalization of each of the other order wave functions, y 

is left arbitrary, except where explicitly discussed in the text. 

, 

I. THE UPPER BOUND 

The Hylleraas principle is a well known variational 
11 

principle for the first order Rayleigh-Schrodinger perturbation 

differential equation, and it provides an upper bound for the 
2 second order perturbation energy . In this section the Hylleraas 

principle is generalized to provide variational principles for 

all of the higher order perturbation differential equations, 

both for single and double perturbation problems, and to give 

upper bounds fo r  all of the even order energies. 

A. Single Perturbations 

The Rayleigh-Schr:dinger perturbation differential equation 
1 of order n is 
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I n  t h e  following i t  w i l l  be assumed that; t h e  per turba t ion  wave 

func t ions  of order  less than n a re  known exact ly .  It w i l l  be 

shown t h a t  t h e  per turba t ion  d i f f e r e n t i a l  equation (Eq. (1)) is t he  

E u l e r  equat ion corresponding t o  the v a r i a t i o n a l  p r i n c i p l e  

r=2 

where K(n) is  an a r b i t r a r y  funct ion which is not  sub jec t  t o  t h e  

v a r i a t i o n  as  it i s  independent of . Let  t h e  unperturbed 

Hamiltonian, Ho , be of the  form 

HO = - 4 1  vi + uo > (3) 
i 

where Uo 

p a r t i c l e s  i n  the  system. Then Eq. (2) becomes 

is a s c a l a r  p o t e n t i a l  and the summation is over t h e  

i 

r=2 

If it is  assumed t h a t  $(*) vanishes s u f f i c i e n t l y  r ap id ly  at 

i n f i n i t y ,  Gauss's theorem may be applied t o  Eq. (4) t o  give 
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n 

. 
The Euler  equation f o r  t h i s  va r i a t iona l  p r i n c i p l e  w i l l  be of t h e  

f o m  
5 

+ -  a a =i 

where I is  t h e  integrand i n  Eq. (5) and (Jr (n)) = 

'i a zi 

If t h e  e x p l i c i t  form of I as given by Eq. (5) i s  i n s e r t e d  i n t o  

Eq. ( 6 )  t he  r e s u l t i n g  Euler  equation is  

n 
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which i s  t he  same as Eq. (1) with Ho given by Eq. (3). The value 

of i n  Eq. (4) is a rb i t r a ry .  It may be chosen so t h a t  when 

9'") i s  an exact so lu t ion  of the  d i f f e r e n t i a l  equat ion (Eq. (1)) 

Q(") w i l l  be equal t o  the  (2n)th order  pe r tu rba t ion  energy, 

From Eq. (1) f o r  t he  exact \Ir (4 

L 
r=2 

When t h i s  expression i s  used i n  Eq. (2) 
n 

1 But may be expressed as 

2n- 1 

. 

Thus i n  order  t o  make 

and '( 10) 

Q(") and 6 (2n) . equal as given by Eqs. (9) 

n-1 2n-i  

is1 j=n-i+l  
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2n- 1 

The f i n a l  r e s u l t  i s  then 

where $n) and .v(n) Jr 
$("I respec t ive ly .  When $n) i s  made s t a t iona ry  rcr(n) Jr 
approximation t o  q(n) , and when the  state under considerat ion is  

t h e  lowest state of a given symnetry r3(n) Q 

are approximations t o  the  exact (2n) and 

is t h e  best 

i s  an upper bound t o  t h e  
exact ( 2 4  

9 

The latter,  (Eq. 13) may be shown by wr i t i ng  1 

Then 



6 

n 

From the differential equation the last three terms vanish leaving 

6 $r(n) may be expanded in terms of eigenfunctions of H which yields 
0 

which is clearly positive when the state considered is the ground 

state. Whenever the state considered is the lowest of a given 

symmetry a l l  of the scalar products (6$(n) , $io)) with lower 
states will vanish if it is assumed that 

symmetry as 

SJr(n) has the same 
J r ( O ) ,  and the sum in Eq. (17) will still be positive. 

The normalization that is used will affect the form of 4 n )  Q . 
If the normalization 

is used Eq. (12) is simplified somewhat. Under this normalization 

n- 1 n-1 2n-i-1 

(2n- i- j ) Xdi) , JI 1 . 
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The other common normalization, 

L 
k=o 

( P  = 1,2, ... n) , (20) 

also 
under this normalization becomes 

simplifies the form of en’. After some manipulation 44 Q 

B. Double Perturbations 

Double perturbations may be treated in an entirely analagous 
manner to that which was used with single perturbations. 

Rayleigh-Schrknger perturbation differential equation of order 
(r,s) is 

The 

n s  

In the following it will be assumed that the perturbation wave 

functions of order less than (r,s) are known exactly. More 

specifically, wave functions of orders (l,k), ( A , s ) ,  and 

(r,k) are known exactly where I <  r and k < s. Then the varia- 

tional principle for Eq. (21) is 
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This  can be checked by means of t h e  Euler  equation as w a s  done for 

t h e  s ing le  per turbat ions.  

The problem remains t o  make the  exact Q(r's) equal t o  t h e  

exact  ( 2 r , Z s )  order  energy, e(2rJ2s) , by appropriate  choice of 
K(ryS) .  I f  t h e  d i f f e r e n t i a l  equation f o r  t h e  exact $ (r,s) is 

used, the exact Q (r>s) (Eq. (22)) may be modified t o  give 

r s  

From the general  expression f o r  t h e  (2r,  2s) order  energy, 
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(where t h e  a s t e r i s k  on t h e  sum means t h e  term i = 0, k = 0, j = 2r,  

4-  2s and is  omitted) it can be  seen t h a t  t o  make Q 
&2ry2s) equal as given by Eqs. (23)an.d (24) 

k=O &=s-k+l i = O  j=r-i+l 

r s  

where $ r y s )  and 4r’s) a re  approximations t o  t h e  exact 
When @ r y s )  i s  made c(2r,2s) and $ (rys) respec t ive ly .  
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stationary 
the state under consideration is the lowest state of a given 

r(r9s) is the best approximation to @ (r's), and when 

Various normalization schemes may again be used which will 

modify the double perturbation equations in much the same way as 
they modified the single perturbation equations. 

11. TEE LOWER B O W  
4 The Thomson principle of electrostatics has been extended to 

t? 
give a lower bound to the second order Rayleigh-Schrodinger per- 

turbation energy. In this section it is extended farther in an 

analagous manner to give lower bounds for all of the even order 

energies both for single and for double perturbation problems. 
In part C of this section the total Schrsdinger equation is treated 
in the same manner and a lower bound is obtained for part of the 
total energy. 

A. Single Perturbations 
If F(n) is defined by 

1 the perturbation differential equations take the form 

n 

L 
r=2 

From Eq. ( 9 )  
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r=2 

Therefore, from Eqs. (29) and (30) 

I Using Gauss’s theorem and defining G y )  = -V. F (4 
1 

Eq. (31) becomes 

i 

With the same def in i t ion  Eq. (29) may be  rewritten 

L 
r=2 

If sin) i s  written as the sum of an approximate f i e l d  and an 

error 
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Eq. ( 3 2 )  becomes 

i 

+ %I J $ ( o ) 2  8 -1 G!") d> . (36) 

i 

From the constraint (Eq. ( 3 3 ) )  

i 

Multiplying by F (n) and integrating, 
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and applying Gauss's theorem the  following equation i s  obtained: 

(n) . However, vi F'~) =: -G -i , t he re fo re  

Thus upon h s e r t i n g  Eq. (40) i n t o  Eq. (36) 

Since t h e  second i n t e g r a l  on the r i g h t  i s  p o s i t i v e  it must be t r u e  

t h a t  

i 
( 4 2 )  

d? i s  gi.ven by Eq. (11) and 5") is sub jec t  t o  s 1 
where 

t h e  cons t r a in t  of Eq. ( 3 3 ) .  

B. Double Perturbat ions 

The treatment of double per turbat ions i s  e n t i r e l y  analagous 

t o  t h a t  of s i n g l e  per turbat ions.  I f  F(r-'s) i s  defined by 
p , S )  -p F(r>s) 5,(Oj0)  ( 4 3 )  
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t h e  per turbat ion d i f f e r e n t i a l  equations t ake  t h e  form 

From Eq. (23) 

r S 

Therefore, from Eqs.  ( 4 4 )  and (45) 

This  equation i s  i d e n t i c a l  i n  form t o  Eq. (31), t h e r e f o r e  by t h e  

same reasoning as i n  Sect.  IIA it can be deduced t h a t  
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Ml'r9 s) d? is defined by Eq. (25) and +r,s) si s is an mere 

apprcsfmation to -VeF'r's) sub jec t  t o  t h e  cons t r a in t  
1 

fc 
C. The Total Schrodinger Equation 

cr The Schrodirger equation, (H - E)Y = 0 , can b e  

w r i t t e n  i n  t h e  form 

w5ere Y + A V  r: E . I f  F is defined by t h e  

re P a t  i 071 

0 

( 0 )  y =  F * 
Eq. ( 4 9 )  reduces to 

which i s  of the same form as Eqs, (29) and ( 4 4 ) .  

t h i s  equation may be  t reated i n  a s i m i l a r  manner t o  ob ta in  

Therefore, 
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i 

N 
where Gi i s  an approximation t o  - Vi F sub jec t  to t h e  

cons t r a in t  

Y 

i 

This  r e s u l t  i s  of l i t t l e  value a s  t h e  quant i ty  bounded (Eq. (52)) 

i s  only pa r t  of t he  energy, not t he  t o t a l  energy, and t h e  constraint 

involves t h e  exact wave funct ion.  
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